pGreenPuro (EF1α) shRNA Cloning and Expression Lentivector

Set up stable, heritable gene silencing with this shRNA HIV-based lentivector – co-express puromycin and copGFP from the EF1α promoter

Description
Size
Catalog Number
Price
Quantity
Add to Cart

pGreenPuro shRNA expression lentivector (EF1)

10 µg
SI506A-1
$ 544
Contact Us Speak to a specialist
1-888-266-5066

Overview

Set up stable, heritable RNAi

Well-regarded in the industry for high, reliable gene expression, SBI’s lentiviral vectors also efficiently deliver RNAi. Generate cell lines with stable, heritable gene silencing to develop a thorough understand of the target gene’s function. Our HIV-based pGreenPuro (EF1α) shRNA Cloning and Expression Lentivector shRNA Cloning and Expression Lentivector drives expression of your shRNA template from the H1 promoter, and after processing in the cell, your shRNA will be converted into siRNA. The vector also co-expresses puromycin and copGFP from the moderate EF1α promoter, with co-expression mediated by a T2A element.

pGreenPuro (EF1α) shRNA Cloning and Expression Lentivector

How It Works

Using SBI’s shRNA lentivectors to produce siRNAs

To produce siRNAs for RNAi using the pSIF1-H1-H2Kk Cloning and Expression Lentivector, first clone your shRNA template into the unique BamHI or EcoRI sites in the vector. After packaging and transduction, the vector will integrate into the genome and your shRNA will be transcribed from the H1 promoter using RNA polymerase III. The shRNA is transcribed as a single strand with a sense-loop-anti-sense structure that folds into a hairpin, and is then processed by DICER to produce an active siRNA molecule (Figure 1).

Generating siRNA from the pGreenPuro (EF1α) shRNA Cloning and Expression Lentivector

Figure 1. Generating siRNA from the pGreenPuro (EF1α) shRNA Cloning and Expression Lentivector.

Supporting Data

Using SBI’s shRNA lentivectors—selecting for transductants

Using SBI’s shRNA lentivectors—selecting for transductants

Figure 2. Using SBI’s shRNA lentivectors. Easily select transductants with one of our markers—these examples show selection using GFP and puromycin markers on either the pSIH1-H1-copGFP (Cat.# SI501B-1) or pGreenPuro™ (Cat.# SI505A-1VB-1) shRNA Cloning and Expression Lentivectors.


Citations

  • Bai, F, et al. (2019) Simvastatin induces breast cancer cell death through oxidative stress up-regulating miR-140-5p. Aging (Albany NY). 2019 May 28; 11(10):3198-3219. PM ID: 31138773
  • Wei, Y, et al. (2019) The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy. J. Clin. Invest.. 2019 May 21; 130. PM ID: 31112529
  • Tian, M, et al. (2019) Fluoxetine suppresses inflammatory reaction in microglia under OGD/R challenge via modulation of NF-κB signaling. Biosci. Rep.. 2019 Apr 30; 39(4). PM ID: 30944203
  • Đặng, TC, et al. (2019) Powerful Homeostatic Control of Oligodendroglial Lineage by PDGFRα in Adult Brain. Cell Rep. 2019 Apr 23; 27(4):1073-1089.e5. PM ID: 31018125
  • Zong, L, et al. (2019) LINC00162 confers sensitivity to 5-Aza-2′-deoxycytidine via modulation of an RNA splicing protein, HNRNPH1. Oncogene. 2019 Mar 29;:1-13. Link: Oncogene
  • Bieri, G, et al. (2019) LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol.. 2019 Mar 29;. PM ID: 30927072
  • Shang, W, et al. (2019) The Pseudogene Olfr29-ps1 Promotes the Suppressive Function and Differentiation of Monocytic MDSCs. Cancer Immunol Res. 2019 Mar 26;. PM ID: 30914411
  • Liu, Y, et al. (2019) Long noncoding RNA CCAT2 promotes hepatocellular carcinoma proliferation and metastasis through up-regulation of NDRG1. Exp. Cell Res.. 2019 Mar 25;. PM ID: 30922920
  • Ji, P, et al. (2019) Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019 Mar 19; 26(12):3444-3460.e5. PM ID: 30893614
  • Perez, Y, et al. (2019) Mutations in the microtubule-associated protein MAP11 (C7orf43) cause microcephaly in humans and zebrafish. Brain. 2019 Mar 1; 142(3):574-585. PM ID: 30715179
  • Li, K, et al. (2019) CDKL1 promotes the chemoresistance of human oral squamous cell carcinoma cells to hydroxycamptothecin. Mol. Cell. Probes. 2019 Feb 22;. PM ID: 30802495
  • Andres-Alonso, M, et al. (2019) SIPA1L2 controls trafficking and signaling of TrkB-containing amphisomes at presynaptic terminals. bioRxiv. 2019 Feb 20;. Link: bioRxiv
  • Xie, D, et al. (2019) Dysregulation of HDAC9 represses trophoblast cell migration and invasion through TIMP3 activation in preeclampsia. Am. J. Hypertens.. 2019 Feb 2;. PM ID: 30715128
  • Feng, Y, et al. (2019) Blocking C/EBP β protects vascular endothelial cells from injury induced by intermittent hypoxia. Sleep Breath. 2019 Jan 25;. PM ID: 30680681
  • Li, Z, et al. (2017) Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. J. Biol. Chem.. 2017 Jun 27;. PM ID: 28655760
  • Cheng, X, et al. (2017) Solute Carrier Family 39 Member 6 Gene Promotes Aggressiveness of Esophageal Carcinoma Cells by Increasing Intracellular Levels of Zinc, Activating Phosphatidylinositol 3-Kinase Signaling, and Up-regulating Genes That Regulate Metastasis. Gastroenterology. 2017 Jun 1; 152(8):1985-1997.e12. PM ID: 28209530
  • Celià-Terrassa, T, et al. (2017) Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis. Nat. Cell Biol.. 2017 Jun 1; 19(6):711-723. PM ID: 28530657
  • Radulovic, V, et al. (2017) Differential response of normal and transformed mammary epithelial cells to combined treatment of anti-miR-21 and radiation. Int. J. Radiat. Biol.. 2017 Apr 1; 93(4):361-372. PM ID: 28067096
  • Guterman-Ram, G, et al. (2017) Dual-specificity tyrosine phosphorylation-regulated kinase 2 regulates osteoclast fusion in a cell heterotypic manner. J. Cell. Physiol.. 2017 Mar 23;. PM ID: 28332708
  • Xue, L, et al. (2017) TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141. Oncotarget. 2017 Mar 21; 8(12):19274-19284. PM ID: 27974706