HR Targeting Vectors
Whether you’re using CRISPR/Cas9 for gene knock-ins, knock-outs, or edits, SBI’s ready-to-clone HR Targeting Vectors are carefully designed for easier workflows
Taking advantage of the cell’s double-strand break (DSB) repair system, homologous recombination (HR) targeting vectors (also known as HR donor vectors) can increase the efficiency of gene knock-outs, and are essential for gene knock-ins, edits, and fusions. SBI’s HR Targeting Vectors are all that and more, with features that can make it easier to find successful clones, minimize the amount of vector DNA left in the genome, minimize off-target integration, and more.
Need help choosing? Take a look at our table below, or contact technical support—we’re here to help you find the right product for your application, and can provide expert experimental support.
Catalog # | HR Donor Vector | Features* | Application | |||
Gene Knock-out | Gene Knock-in | Gene Edits | Gene Tagging | |||
HR100PA-1 | MCS1-LoxP-MCS2-MCS3-pA-LoxP-MCS4 | Basic HR Donor | ||||
HR110PA-1 | MCS1-EF1α-RFP-T2A-Puro-pA-MCS2 | Removable RFP marker and puromycin selection | ||||
HR120PA-1 | GFP-pA-LoxP-EF1α-RFP-T2A-Puro-pA-LoxP-MCSPuro-pA-LoxP-MCS | Tag with GFP fusion Removable RFP marker and puromycin selection |
||||
HR130PA-1 | T2A-GFP-pA-loxP-EF1α-RFP-T2A-Puro-pA-LoxP-MCSA-loxP-EF1α-RFP-T2A-Puro-pA-LoxP-MCS | Co-express GFP with “tagged” gene via T2A Removable RFP marker and puromycin selection |
||||
HR150PA-1 | GFP-T2A-Luc-pA-loxP-EF1α-RFP-T2A-Puro-pA-LoxP-MCS | Tag with GFP fusion and co-express luciferase via T2A Removable RFP marker and puromycin selection |
||||
HR180PA-1 | IRES-GFP-pA-loxP-MCS1-EF1α-RFP-T2A-Puro-pA-LoxP-MCS2 | Co-express GFP with “tagged” gene via IRES Removable RFP marker and puromycin selection |
||||
HR210PA-1 | MCS1-LoxP-EF1α-GFP-T2A-Puro-P2A-hsvTK-pA-LoxP-MCS2 | Removable GFP marker, puromycin selection, and TK selection | ||||
HR220PA-1 | GFP-pA-LoxP-EF1α-RFP-T2A-Hygro-pA-LoxP-MCS | Tag with GFP fusion Removable RFP ,arker and hygromycin Selection |
||||
HR410PA-1 | MCS1-EF1α-GFP-T2A-Puro-pA-MCS2 | Removable GFP marker and puromycin selection | ||||
HR510PA-1 | MCS1-EF1α-RFP-T2A-Hygro-pA-MCS2 | Removable RFP marker and hygromycin selection | ||||
HR700PA-1 | MCS1-EF1α-GFP-T2A-Puro-pA-MCS2-PGK-hsvTK | Enrich for on-target integration with negative TK selection** Removable GFP marker and puromycin selection |
||||
HR710PA-1 | MCS1-EF1α-RFP-T2A-Hygro-pA-MCS2-PGK-hsvTK | Enrich for on-target integration with negative TK selection** Removable RFP marker and hygromycin selection |
||||
HR720PA-1 | MCS1-EF1α-Blasticidin-pA-MCS2-PGK-hsvTK | Enrich for on-target integration with negative TK selection** Removable blasticidin selection |
||||
GE602A-1 | pAAVS1D-PGK-MCS-EF1α-copGFPpuro | First generation AAVS1-targeting HR Donor | ||||
GE603A-1 | pAAVS1D-CMV-RFP-EF1α-copGFPpuro | First generation AAVS1-targeting HR Donor (positive control for GE602A-1) | ||||
GE620A-1 | AAVS1-SA-puro-MCS | Second generation AAVS1-targeting HR Donor Promoterless to knock-in any gene or promoter-gene combination |
||||
GE622A-1 | AAVS1-SA-puro-EF1α-MCS | Second generation AAVS1-targeting HR Donor Constitutive expression of your gene-of-interest |
||||
GE624A-1 | AAVS1-SA-puro-MCS-GFP | Second generation AAVS1-targeting HR Donor Create reporter cell lines |
||||
CAS620A-1 | AAVS1-SA-puro-EF1α-hspCas9 | Knock-in Cas9 to the AAVS1 site | ||||
PBHR100A-1 | MCS1-5'PB TR-EF1α-GFP-T2A-Puro-T2A-hsvTK-pA-3' PB TR-MCS2 | Use with the PiggyBac Transposon System Enables seamless gene editing with no residual footprint (i.e. completely remove vector sequences) |
||||
*All HR Target Vectors except PBHR100A-1 contain LoxP sites. Any sequences that are integrated between the two LoxP sites can be removed through transient expression of Cre Recombinase. **The clever design of these HR Donors enables enrichment for on-target integration events. A PGK-hsvTK cassette is included outside of the homology arms. Because of this configuration, on-target integration that results from homologous recombination will not include the PGK-hsvTK cassette—only randomly-integrated off-target events will lead to integration of PGK-hsvTK and resulting TK activity. Therefore, TK selection will negatively select against off-target integrants. Click on any one of these vectors to see a diagram of how the negative selection works. |