pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler™ Lentivector Plasmid & Pre-packaged Virus

Reliably label cells with luciferase driven by a strong CMV promoter (and with puro selection) - great for tracking cells, HTS assays, and more
  • Proven—leverages SBI’s third generation lentivector technology for optimal virus titers
  • Validated—sequence-verified from LTR to LTR and expression-verified in HT-1080 cells
  • Flexible—available in a range of fluorescent markers, selection markers, and promoters (Table 1)

Products

Catalog Number Description Size Price Quantity Add to Cart
LL150PA-1 pLL-CMV-Luciferase-T2A-Puro (Lenti-Labeler™ plasmid) 10 µg $635
- +
LL150VA-1 pLL-CMV-Luciferase-T2A-Puro (Lenti-Labeler™ virus) >2x10^6 IFUs $635
- +

Overview

Overview

Reliable cell labeling, delivered

SBI’s family of Lenti-Labeler™ constructs facilitate a wide range of studies—including cell tracking, high-throughput assays, and more—by enabling efficient and reliable labeling of your cells. The pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler™ construct expresses luciferase from the CMV promoter, which delivers strong expression in most commonly-used cell lines (HeLa, HEK293, HT-1080, etc.), and co-expresses the puromycin resistance gene for selection in vitro prior to in vivo use. Available as either fully propagatable, sequence-verified plasmid DNA (Cat.# LL150PA-1) or ready-to-transduce pre-packaged lentivirus (Cat.# LL150VA-1), SBI’s pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler™ is designed for reliability, so you can get to valuable insights faster.

pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler
  • Proven—leverages SBI’s third generation lentivector technology for optimal virus titers
  • Validated—sequence-verified from LTR to LTR and expression-verified in HT-1080 cells
  • Flexible—available in a range of fluorescent markers, selection markers, and promoters (Table 1)

While the pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler construct is compatible with most second and third generation packaging plasmid mixes, SBI recommends the use of pPACKH1 (Cat #LV500A-1) and TransDux MAX Transduction Reagent (Cat #LV860A-1) to achieve optimal virus titers and infection of target cells.

Find the right Lenti-Labeler construct for your studies

SBI offers Lenti-Labeler constructs with a range of selection markers, reporter genes, and two different promoters.

Table 1. Available Lenti-Labeler Constructs

Cat. #ConstructPromoterReporterSelection
LL100PA-1/LL100VA-1pLL-CMV-GFP-T2A-PuroCMV
GFPPuromycin
LL105PA-1/LL105VA-1pLL-CMV-GFP-T2A-Blast

CMVGFPBlasticidin
LL110PA-1/LL110VA-1pLL-CMV-RFP-T2A-PuroCMVRFPPuromycin
LL115PA-1/LL115VA-1pLL-CMV-RFP-T2A-BlastCMVRFPBlasticidin
LL120PA-1/LL120VA-1pLL-CMV-BFP-T2A-PuroCMVBFPPuromycin
LL125PA-1/LL125VA-1pLL-CMV-BFP-T2A-BlastCMVBFPBlasticidin
LL150PA-1/LL150VA-1pLL-CMV-Luciferase-T2A-PuroCMVLuciferasePuromycin
LL200PA-1/LL200VA-1pLL-EF1α-GFP-T2A-PuroEF1αGFPPuromycin
LL205PA-1/LL205VA-1pLL-EF1α-GFP-T2A-BlastEF1αGFPBlasticidin
LL210PA-1/LL210VA-1pLL-EF1α-RFP-T2A-PuroEF1αRFPPuromycin
LL215PA-1/LL215VA-1pLL-EF1α-RFP-T2A-BlastEF1αRFPBlasticidin
LL220PA-1/LL220VA-1pLL-EF1α-BFP-T2A-PuroEF1αBFPPuromycin
LL225PA-1/LL225VA-1pLL-EF1α-BFP-T2A-BlastEF1αBFPBlasticidin
LL250PA-1/LL250VA-1pLL-EF1α-Luciferase-T2A-PuroEF1αLuciferasePuromycin
LL300PA-1/LL300VA-1pLL-CMV-rFLuc-T2A-GFPCMVLuciferase & GFPN/A
LL310PA-1/LL310VA-1pLL-CMV-rFLuc-T2A-GFP-mPGK-Puro CMVLuciferase & GFPPuromycin
LL320PA-1/LL320VA-1pLL-CMV-rFLuc-T2A-mRFP-mPGK-Puro CMVLuciferase & RFPPuromycin
LL410PA-1/LL410VA-1pLL-EF1a-rFLuc-T2A-GFP-mPGK-Puro EF1αLuciferase & GFPPuromycin
LL420PA-1/LL420VA-1pLL-EF1a-rFLuc-T2A-mRFP-mPGK-Puro EF1αLuciferase & RFPPuromycin

How It Works

Supporting Data

Supporting Data

SBI’s Lenti-Labelers get your cells labeled efficiently, reliably

Lenti-Labeler

Figure 1. SBI Lenti-Labeler constructs reliably and efficiently label cells. Comparison of the number of fluorescently-labeled cells to the total number of cells seen in the corresponding phase contrast images reveals the high labeling efficiency of SBI’s Lenti-Labeler constructs.

FAQs

Resources

Citations

  • Yu, BY, et al. (2024) Dimethyl α-Ketoglutarate Promotes the Synthesis of Collagen and Inhibits Metalloproteinases in HaCaT Cells. Biomolecules & therapeutics. 2024; 32(2):240-248. PM ID: 38296652
  • Vilpreux, C, et al. (2024) Sperm motility in mice with Oligo-astheno-teratozoospermia restored by in vivo injection and electroporation of naked mRNA. eLife. 2024;. Link: eLife
  • Wan, Q, et al. (2024) Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nature communications. 2024; 15(1):1442. PM ID: 38365882
  • Kang, J, et al. (2024) Depletion of SAM leading to loss of heterochromatin drives muscle stem cell ageing. Nature metabolism. 2024; 6(1):153-168. PM ID: 38243132
  • Chan, TS, et al. (2024) ASPM stabilizes the NOTCH intracellular domain 1 and promotes oncogenesis by blocking FBXW7 binding in hepatocellular carcinoma cells. Molecular oncology. 2024;. PM ID: 38279565
  • Reavis, HD, et al. (2024) Norepinephrine induces anoikis resistance in high-grade serous ovarian cancer precursor cells. JCI insight. 2024;. PM ID: 38271085
  • Brightman, SE, et al. (2023) Neoantigen-specific stem cell memory-like CD4+ T cells mediate CD8+ T cell-dependent immunotherapy of MHC class II-negative solid tumors. Nature immunology. 2023; 24(8):1345-1357. PM ID: 37400675
  • Lai, YH, et al. (2023) Stem cell-nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy. Nature communications. 2023; 14(1):285. PM ID: 36650171
  • Jeon, HM, et al. (2023) Tissue factor is a critical regulator of radiation therapy-induced glioblastoma remodeling. Cancer cell. 2023;. PM ID: 37451272
  • Yamada-Hunter, S, et al. (2023) Engineered CD47 protects T cells for enhanced antitumor immunity. bioRxiv. 2023;. Link: bioRxiv
  • Pearson, S, et al. (2023) Identification of curaxin as a potential new therapeutic for JAK2 V617F mutant patients. PloS one. 2023; 18(5):e0286412. PM ID: 37253035
  • Campelo, SN, et al. (2023) High-frequency irreversible electroporation improves survival and immune cell infiltration in rodents with malignant gliomas. Frontiers in oncology. 2023; 13:1171278. PM ID: 37213298
  • Sugita, M, et al. (2023) Radiation therapy improves CAR T cell activity in acute lymphoblastic leukemia. Cell death & disease. 2023; 14(5):305. PM ID: 37142568
  • Saini, M, et al. (2023) Resistance to mesenchymal reprogramming sustains clonal propagation in metastatic breast cancer. Cell reports. 2023;:112533. PM ID: 37257449
  • Cheng, J, et al. (2023) Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8+ T cells in the tumor microenvironment. Cell metabolism. 2023;. PM ID: 37178684
  • Kehrer, T. (2023) Molecular and Functional Characterization of Innate Immune Antagonisms by the SARS-CoV-2 Accessory Protein ORF6. Thesis. 2023;. Link: Thesis
  • Gou, X, et al. (2023) Kinome reprogramming is a targetable vulnerability in ESR1 fusion-driven breast cancer. Cancer research. 2023;. PM ID: 37071495
  • Yu, BY, et al. (2023) Dimethyl Itaconate Inhibits Melanogenesis in B16F10 Cells. Antioxidants (Basel, Switzerland). 2023; 12(3). PM ID: 36978940
  • Celik, A, et al. (2023) Mitochondrial transplantation: Effects on chemotherapy in prostate and ovarian cancer cells in vitro and in vivo. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023; 161:114524. PM ID: 36948134
  • Gao, X, et al. (2023) Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity. BMC cancer. 2023; 23(1):154. PM ID: 36793021
pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler™ Lentivector Plasmid & Pre-packaged Virus $635.00

Products

Catalog Number Description Size Price Quantity Add to Cart
LL150PA-1 pLL-CMV-Luciferase-T2A-Puro (Lenti-Labeler™ plasmid) 10 µg $635
- +
LL150VA-1 pLL-CMV-Luciferase-T2A-Puro (Lenti-Labeler™ virus) >2x10^6 IFUs $635
- +

Overview

Overview

Reliable cell labeling, delivered

SBI’s family of Lenti-Labeler™ constructs facilitate a wide range of studies—including cell tracking, high-throughput assays, and more—by enabling efficient and reliable labeling of your cells. The pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler™ construct expresses luciferase from the CMV promoter, which delivers strong expression in most commonly-used cell lines (HeLa, HEK293, HT-1080, etc.), and co-expresses the puromycin resistance gene for selection in vitro prior to in vivo use. Available as either fully propagatable, sequence-verified plasmid DNA (Cat.# LL150PA-1) or ready-to-transduce pre-packaged lentivirus (Cat.# LL150VA-1), SBI’s pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler™ is designed for reliability, so you can get to valuable insights faster.

pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler
  • Proven—leverages SBI’s third generation lentivector technology for optimal virus titers
  • Validated—sequence-verified from LTR to LTR and expression-verified in HT-1080 cells
  • Flexible—available in a range of fluorescent markers, selection markers, and promoters (Table 1)

While the pLL-CMV-Luciferase-T2A-Puro Lenti-Labeler construct is compatible with most second and third generation packaging plasmid mixes, SBI recommends the use of pPACKH1 (Cat #LV500A-1) and TransDux MAX Transduction Reagent (Cat #LV860A-1) to achieve optimal virus titers and infection of target cells.

Find the right Lenti-Labeler construct for your studies

SBI offers Lenti-Labeler constructs with a range of selection markers, reporter genes, and two different promoters.

Table 1. Available Lenti-Labeler Constructs

Cat. #ConstructPromoterReporterSelection
LL100PA-1/LL100VA-1pLL-CMV-GFP-T2A-PuroCMV
GFPPuromycin
LL105PA-1/LL105VA-1pLL-CMV-GFP-T2A-Blast

CMVGFPBlasticidin
LL110PA-1/LL110VA-1pLL-CMV-RFP-T2A-PuroCMVRFPPuromycin
LL115PA-1/LL115VA-1pLL-CMV-RFP-T2A-BlastCMVRFPBlasticidin
LL120PA-1/LL120VA-1pLL-CMV-BFP-T2A-PuroCMVBFPPuromycin
LL125PA-1/LL125VA-1pLL-CMV-BFP-T2A-BlastCMVBFPBlasticidin
LL150PA-1/LL150VA-1pLL-CMV-Luciferase-T2A-PuroCMVLuciferasePuromycin
LL200PA-1/LL200VA-1pLL-EF1α-GFP-T2A-PuroEF1αGFPPuromycin
LL205PA-1/LL205VA-1pLL-EF1α-GFP-T2A-BlastEF1αGFPBlasticidin
LL210PA-1/LL210VA-1pLL-EF1α-RFP-T2A-PuroEF1αRFPPuromycin
LL215PA-1/LL215VA-1pLL-EF1α-RFP-T2A-BlastEF1αRFPBlasticidin
LL220PA-1/LL220VA-1pLL-EF1α-BFP-T2A-PuroEF1αBFPPuromycin
LL225PA-1/LL225VA-1pLL-EF1α-BFP-T2A-BlastEF1αBFPBlasticidin
LL250PA-1/LL250VA-1pLL-EF1α-Luciferase-T2A-PuroEF1αLuciferasePuromycin
LL300PA-1/LL300VA-1pLL-CMV-rFLuc-T2A-GFPCMVLuciferase & GFPN/A
LL310PA-1/LL310VA-1pLL-CMV-rFLuc-T2A-GFP-mPGK-Puro CMVLuciferase & GFPPuromycin
LL320PA-1/LL320VA-1pLL-CMV-rFLuc-T2A-mRFP-mPGK-Puro CMVLuciferase & RFPPuromycin
LL410PA-1/LL410VA-1pLL-EF1a-rFLuc-T2A-GFP-mPGK-Puro EF1αLuciferase & GFPPuromycin
LL420PA-1/LL420VA-1pLL-EF1a-rFLuc-T2A-mRFP-mPGK-Puro EF1αLuciferase & RFPPuromycin

How It Works

Supporting Data

Supporting Data

SBI’s Lenti-Labelers get your cells labeled efficiently, reliably

Lenti-Labeler

Figure 1. SBI Lenti-Labeler constructs reliably and efficiently label cells. Comparison of the number of fluorescently-labeled cells to the total number of cells seen in the corresponding phase contrast images reveals the high labeling efficiency of SBI’s Lenti-Labeler constructs.

FAQs

Citations

  • Yu, BY, et al. (2024) Dimethyl α-Ketoglutarate Promotes the Synthesis of Collagen and Inhibits Metalloproteinases in HaCaT Cells. Biomolecules & therapeutics. 2024; 32(2):240-248. PM ID: 38296652
  • Vilpreux, C, et al. (2024) Sperm motility in mice with Oligo-astheno-teratozoospermia restored by in vivo injection and electroporation of naked mRNA. eLife. 2024;. Link: eLife
  • Wan, Q, et al. (2024) Hijacking of nucleotide biosynthesis and deamidation-mediated glycolysis by an oncogenic herpesvirus. Nature communications. 2024; 15(1):1442. PM ID: 38365882
  • Kang, J, et al. (2024) Depletion of SAM leading to loss of heterochromatin drives muscle stem cell ageing. Nature metabolism. 2024; 6(1):153-168. PM ID: 38243132
  • Chan, TS, et al. (2024) ASPM stabilizes the NOTCH intracellular domain 1 and promotes oncogenesis by blocking FBXW7 binding in hepatocellular carcinoma cells. Molecular oncology. 2024;. PM ID: 38279565
  • Reavis, HD, et al. (2024) Norepinephrine induces anoikis resistance in high-grade serous ovarian cancer precursor cells. JCI insight. 2024;. PM ID: 38271085
  • Brightman, SE, et al. (2023) Neoantigen-specific stem cell memory-like CD4+ T cells mediate CD8+ T cell-dependent immunotherapy of MHC class II-negative solid tumors. Nature immunology. 2023; 24(8):1345-1357. PM ID: 37400675
  • Lai, YH, et al. (2023) Stem cell-nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy. Nature communications. 2023; 14(1):285. PM ID: 36650171
  • Jeon, HM, et al. (2023) Tissue factor is a critical regulator of radiation therapy-induced glioblastoma remodeling. Cancer cell. 2023;. PM ID: 37451272
  • Yamada-Hunter, S, et al. (2023) Engineered CD47 protects T cells for enhanced antitumor immunity. bioRxiv. 2023;. Link: bioRxiv
  • Pearson, S, et al. (2023) Identification of curaxin as a potential new therapeutic for JAK2 V617F mutant patients. PloS one. 2023; 18(5):e0286412. PM ID: 37253035
  • Campelo, SN, et al. (2023) High-frequency irreversible electroporation improves survival and immune cell infiltration in rodents with malignant gliomas. Frontiers in oncology. 2023; 13:1171278. PM ID: 37213298
  • Sugita, M, et al. (2023) Radiation therapy improves CAR T cell activity in acute lymphoblastic leukemia. Cell death & disease. 2023; 14(5):305. PM ID: 37142568
  • Saini, M, et al. (2023) Resistance to mesenchymal reprogramming sustains clonal propagation in metastatic breast cancer. Cell reports. 2023;:112533. PM ID: 37257449
  • Cheng, J, et al. (2023) Cancer-cell-derived fumarate suppresses the anti-tumor capacity of CD8+ T cells in the tumor microenvironment. Cell metabolism. 2023;. PM ID: 37178684
  • Kehrer, T. (2023) Molecular and Functional Characterization of Innate Immune Antagonisms by the SARS-CoV-2 Accessory Protein ORF6. Thesis. 2023;. Link: Thesis
  • Gou, X, et al. (2023) Kinome reprogramming is a targetable vulnerability in ESR1 fusion-driven breast cancer. Cancer research. 2023;. PM ID: 37071495
  • Yu, BY, et al. (2023) Dimethyl Itaconate Inhibits Melanogenesis in B16F10 Cells. Antioxidants (Basel, Switzerland). 2023; 12(3). PM ID: 36978940
  • Celik, A, et al. (2023) Mitochondrial transplantation: Effects on chemotherapy in prostate and ovarian cancer cells in vitro and in vivo. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2023; 161:114524. PM ID: 36948134
  • Gao, X, et al. (2023) Novel fusion protein PK5-RL-Gal-3C inhibits hepatocellular carcinoma via anti-angiogenesis and cytotoxicity. BMC cancer. 2023; 23(1):154. PM ID: 36793021