PB-CMV-MCS-EF1α-RFP PiggyBac cDNA Cloning and Expression Vector

Easily deliver your gene-of-interest using PiggyBac – this vector includes an RFP reporter gene and drives your cDNA with the strong CMV promoter

Description
Size
Catalog Number
Price
Quantity
Add to Cart

PB-CMV-MCS-EF1α-RFP cDNA cloning and expression vector

10 µg
PB512B-1
$ 585
Contact Us Speak to a specialist
1-888-266-5066

Overview

Get easy, consistent transgenesis

Consistent and easy-to-use, SBI’s PiggyBac Transposon System includes cloning and expression vectors that come with a range of markers as well as both constitutive and inducible promoters. The PB-CMV-MCS-EF1α-RFP PiggyBac cDNA Cloning and Expression Vector (Cat.# PB512B-1) drives expression of your gene-of-interest from the strong CMV promoter and expression of an RFP reporter from the EF1α promoter.

PB-CMV-MCS-EF1α-RFP PiggyBac cDNA Cloning and Expression VectorWhy use the PiggyBac Transposon System?

Easy, consistent transgenesis with no limits on cargo size—For transgenesis that’s easy, consistent, and not limited by cargo size, SBI’s PiggyBac Transposon System is an excellent choice. The system consists of a PiggyBac Vector and the Super PiggyBac Transposase which recognizes transposon-specific inverted terminal repeats (ITRs) and efficiently integrates the ITRs and intervening DNA into the genome at TTAA sites. The Super PiggyBac Transposase is delivered to the cell via the Super PiggyBac Transposase Expression Vector, which is co-transfected with one or more PiggyBac Vectors.

Footprint-free removal that leaves no PiggyBac sequences behind—In addition to ease-of-use, consistency, and the lack of limits on DNA insert size, what sets this system apart is the ability to reverse the integration reaction in a footprint-free way—with the Excision Only PiggyBac Transposase (Cat.# PB220PA-1), the ITRs and cargo that the Super PiggyBac Transposase integrates into the genome can be removed, leaving behind the original genomic sequence and nothing else.

  • Make transgenic cell lines with a single transfection
  • Integrate multiple PiggyBac Vectors in a single transfection
  • Insert an expression cassette into human, mouse, and rat cells
  • Deliver virtually any-sized DNA insert, from 10 – 100 kb
  • Choose from PiggyBac Vectors that express your gene-of-interest from constitutive or inducible promoters and include a variety of markers
  • Determine the number of integration events with the PiggyBac qPCR Copy Number Kit (# PBC100A-1)

Customer Agreements
Academic customers can purchase PiggyBac Transposon System components for internal research purposes for indefinite use, whereas commercial customers must sign a customer agreement for a six-month, limited-use license to test the technology.
For end user license information, see the following:

* SBI is fully licensed to distribute PiggyBac vectors as a partnership with Transposagen Biopharmaceuticals, Inc.

How It Works

The PiggyBac Transposon System’s Cut-and-Paste Mechanism

The efficient PiggyBac Transposon System uses a cut-and-paste mechanism to transfer DNA from the PiggyBac Vector into the genome. If only temporary genomic integration is desired, the Excision-only PiggyBac Transposase can be transiently expressed for footprint-free removal of the insert, resulting in reconstitution of the original genome sequence.

The PiggyBac Transposon System’s cut-and-paste mechanism

Figure 1. The PiggyBac Transposon System’s cut-and-paste mechanism.

  • The Super PiggyBac Transposase binds to specific inverted terminal repeats (ITRs) in the PiggyBac Cloning and Expression Vector and excises the ITRs and intervening DNA.
  • The Super PiggyBac Transposase inserts the ITR-Expression Cassette-ITR segment into the genome at TTAA sites.
  • The Excision-only Super PiggyBac Transposase can be used to remove the ITR-Expression Cassette-ITR segment from the genome, for footprint-free removal

Supporting Data

One transfection can integrate one or more genes that can be precisely removed

Efficient transgenesis with the Super PiggyBac Transposase and both single- and dual-promoter PiggyBac Vectors

Figure 2. Efficient transgenesis with the Super PiggyBac Transposase and both single- and dual-promoter PiggyBac Vectors. (Top four panels) Co-transfection with the Super PiggyBac Transposase Expression Vector (Cat.# PB210PA-1) and a Dual Promoter PiggyBac Cloning and Expression Vector (Cat.# PB513B-1) into HeLa cells demonstrates the efficient integration delivered by SBI’s PiggyBac Transposon System. After ten days of puromycin selection, only the cells co-transfected with the Super PiggyBac Transposase (+PB, right two panels) show robust growth and GFP fluorescence. (Bottom four panels) Co-transfection with the Super PiggyBac Transposase Expression Vector (Cat.# PB210PA-1) and a Single Promoter PiggyBac Cloning and Expression Vector (Cat.# PB531A-2) into HEK293 cells further demonstrates the efficient integration delivered by SBI’s PiggyBac Transposon System. After seven days of growth, the majority of cells that received the Super PiggyBac Transposase Expression Vector (+PB, right two panels) were RFP positive.

Simultaneous integration of multiple PiggyBac Vectors is also highly efficient

Figure 3. Simultaneous integration of multiple PiggyBac Vectors is also highly efficient. METHODS: Three different PiggyBac transposon vectors (Cat.# PB513B-1, Cat.# PB533A-2, and Cat.# PB531A-2) were co-transfected with (left panels) or without (right panels) the Super PiggyBac Transposase Expression Vector (Cat.# PB210PA-1) into Human HT1080 cells. Puromycin and neomycin selection was applied for seven days. The cells that were co-transfected with the Super PiggyBac Transposase Expression Vector were puro and neo resistant, GFP-positive, and RFP-positive. Background GFP-positive cells that are puro resistant stem from random PB513B-1 integrations during the puromycin selection. The non-PiggyBac-mediated integration rate in those cells was extremely low and no RFP-positive cells were identified.


Citations

  • Schertzer, MD, et al. (2019) lncRNA-Induced Spread of Polycomb Controlled by Genome Architecture, RNA Abundance, and CpG Island DNA. Mol. Cell. 2019 Jun 27;. PM ID: 31256989
  • Denes, LT, et al. (2019) Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation. Skelet Muscle. 2019 Jun 7; 9(1):17. PM ID: 31174599
  • Richter, JF, et al. (2019) Occludin knockdown is not sufficient to induce transepithelial macromolecule passage. Tissue Barriers. 2019 Jun 4; 7(2):1612661. PM ID: 31161924
  • Mao, X, et al. (2019) Schedule-dependent potentiation of chemotherapy drugs by the hypoxia-activated prodrug SN30000. Cancer Biol. Ther.. 2019 May 26;:1-12. PM ID: 31131698
  • Shinmura, K, et al. (2019) POLQ Overexpression Is Associated with an Increased Somatic Mutation Load and PLK4 Overexpression in Lung Adenocarcinoma. Cancers (Basel). 2019 May 24; 11(5). PM ID: 31137743
  • Chapnick, DA, et al. (2019) Temporal Metabolite, Ion, and Enzyme Activity Profiling Using Fluorescence Microscopy and Genetically Encoded Biosensors. Methods Mol. Biol.. 2019 May 24; 1978:343-353. PM ID: 31119673
  • Li, F, et al. (2019) A piggyBac-based TANGO GFP assay for high throughput screening of GPCR ligands in live cells. Cell Commun. Signal. 2019 May 23; 17(1):49. PM ID: 31122241
  • Shrestha, M, et al. (2019) The transition of tissue inhibitor of metalloproteinases from -4 to -1 induces aggressive behavior and poor patient survival in dedifferentiated liposarcoma via YAP/TAZ activation. Carcinogenesis. 2019 May 10;. PM ID: 31074490
  • Ahmad, ST, et al. (2019) Capicua regulates neural stem cell proliferation and lineage specification through control of Ets factors. Nat Commun. 2019 May 1; 10(1):2000. PM ID: 31043608
  • Gan, L, et al. (2019) The lysosomal GPCR-like protein GPR137B regulates Rag and mTORC1 localization and activity. Nat. Cell Biol.. 2019 May 1; 21(5):614-626. PM ID: 31036939
  • Rivera, FJ, et al. (2019) Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination. Glia. 2019 Apr 30;. PM ID: 31038798
  • Inoue, M, et al. (2019) Structural Basis of Sarco/Endoplasmic Reticulum Ca2+-ATPase 2b Regulation via Transmembrane Helix Interplay. Cell Rep. 2019 Apr 23; 27(4):1221-1230.e3. PM ID: 31018135
  • Bielczyk-Maczyńska, E, et al. (2019) Loss of adipocyte identity through synergistic repression of PPARγ by TGF-β and mechanical stress. bioRxiv. 2019 Apr 11;. Link: bioRxiv
  • Paydarnia, N, et al. (2019) Synergistic effect of granzyme B-azurin fusion protein on breast cancer cells. Mol. Biol. Rep.. 2019 Apr 1;. PM ID: 30937652
  • Sakahara, M, et al. (2019) IFN/STAT signaling controls tumorigenesis and the drug response in colorectal cancer. Cancer Sci.. 2019 Apr 1; 110(4):1293-1305. PM ID: 30724425
  • Jones, EM, et al. (2019) A Scalable, Multiplexed Assay for Decoding GPCR-Ligand Interactions with RNA Sequencing. Cell Syst. 2019 Mar 27; 8(3):254-260.e6. PM ID: 30904378
  • Sauter, EJ, et al. (2019) Induced Neurons for the Study of Neurodegenerative and Neurodevelopmental Disorders. Methods Mol. Biol.. 2019 Mar 23; 1942:101-121. PM ID: 30900179
  • Laugsch, M, et al. (2019) Modeling the Pathological Long-Range Regulatory Effects of Human Structural Variation with Patient-Specific hiPSCs. Cell Stem Cell. 2019 Mar 21;. PM ID: 30982769
  • Farhadi, A, et al. (2019) Ultrasound Imaging of Gene Expression in Mammalian Cells. bioRxiv. 2019 Mar 18;. Link: bioRxiv
  • Garivet, G, et al. (2019) Small-Molecule Inhibition of the UNC-Src Interaction Impairs Dynamic Src Localization in Cells. Cell Chem Biol. 2019 Mar 13;. PM ID: 30956149