NF-κB/293/GFP-Luc™ Transcriptional Reporter Cell Line

Monitor NF-κB signaling in vitro and screen for genetic and/or small molecule inhibitors and activators, and more – sort with GFP and quantify with luciferase
  • Study NF-κB signaling in 293 TN cells
  • Perform live cell imaging or FACS (300-fold over background NF-κB-dependent GFP signal)
  • Measure pathway activity with luciferase
  • Compatible with a variety of screening methods including small molecule and RNAi

Products

Catalog Number Description Size Price Quantity Add to Cart
TR860A-1 NF-kB/293/GFP-Luc Transcriptional Reporter Cell Line >2 x 10^6 Cells $3258
- +

Overview

Overview

Monitor NF-κB signaling in Jurkat cells Speed your studies with this pre-built 293 TN-based cell line for monitoring NF-κB signaling in real time. We’ve already integrated an expression cassette that includes NF-κB-responsive transcriptional elements upstream of a minimal CMV promoter (mCMV)-GFP-luciferase cassette. Expression of GFP (up to 300-fold over background) and luciferase only occurs in the presence of active NF-κB signaling, enabling screening for genetic and/or small molecule inhibitors and activators of the NF-κB signaling pathway. Use GFP fluorescence for live cell imaging and FACS, or luciferase activity to quantitatively measure activity of the signaling pathway.
  • Study NF-κB signaling in 293 TN cells
  • Perform live cell imaging or FACS (300-fold over background NF-κB-dependent GFP signal)
  • Measure pathway activity with luciferase
  • Compatible with a variety of screening methods including small molecule and RNAi

How It Works

Supporting Data

Supporting Data

See the NF-κB/293/GFP-luc Transcriptional Reporter Cell Line in action

Monitor NF-κB in real time with GFP

Monitor NF-κB in real time with GFP

Quantitate NF-κB Activation with luciferase assaysQuantitate NF-κB Activation with luciferase assays

FAQs

Resources

Citations

  • Gampala, S, et al. (2024) New Ref-1/APE1 targeted inhibitors demonstrating improved potency for clinical applications in multiple cancer types. Pharmacological Research. 2024;:107092. Link: Pharmacological Research
  • Liu, YN, et al. (2024) Immunosuppressive role of BDNF in therapy-induced neuroendocrine prostate cancer. Molecular oncology. 2024;. PM ID: 38381121
  • Ishino, T, et al. (2023) Somatic mutations can induce a noninflamed tumour microenvironment via their original gene functions, despite deriving neoantigens. British journal of cancer. 2023;. PM ID: 36732592
  • Pandi, K, et al. (2023) Porphyromonas gingivalis induction of TLR2 association with Vinculin enables PI3K activation and immune evasion. PLoS pathogens. 2023; 19(4):e1011284. PM ID: 37023213
  • Ramachandran, M, et al. (2023) Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer cell. 2023;. PM ID: 37172581
  • Wen, YC, et al. (2023) CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer. Cell death & disease. 2023; 14(5):304. PM ID: 37142586
  • Li, X, et al. (2023) Rosmarinic acid ameliorates autoimmune responses through suppression of intracellular nucleic acid-mediated type I interferon expression. Biochemical and Biophysical Research Communications. 2023;. Link: Biochemical and Biophysical Research Communications
  • Ibrahim, L, et al. (2023) Succinylation of a KEAP1 sensor lysine promotes NRF2 activation. bioRxiv : the preprint server for biology. 2023;. PM ID: 37215033
  • Park, CS, et al. (2023) Stromal-induced epithelial-mesenchymal transition induces targetable drug resistance in acute lymphoblastic leukemia. Cell reports. 2023; 42(7):112804. PM ID: 37453060
  • Ouyang, W, et al. (2023) Development of a New Cell-Based AP-1 Gene Reporter Potency Assay for Anti-Anthrax Toxin Therapeutics. Toxins. 2023; 15(9):528. Link: Toxins
  • Zhao, G, et al. (2023) Base editing of the mutated TERT promoter inhibits liver tumor growth. Hepatology (Baltimore, Md.). 2023;. PM ID: 38016019
  • You, S & Bollong, MJ. (2023) A high throughput screen for pharmacological inhibitors of the carbohydrate response element. Scientific data. 2023; 10(1):676. PM ID: 37794069
  • Melo, CL. (2023) LUMINALABREASTCANCER: INSIGHTS INTOCELLCYCLEREGULATIONAND ESTROGENSIGNALING. Thesis. 2023;. Link: Thesis
  • Labanieh, L, et al. (2022) Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell. 2022;. PM ID: 35483375
  • Teng, CT, et al. (2022) SUPPLEMENTARY MATERIAL: Development of novel cell lines for high throughput screening to detect estrogen-related receptor alpha modulators. slas-discovery.org. 2022;. Link: slas-discovery.org
  • Dane, EL, et al. (2022) STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nature materials. 2022; 21(6):710-720. PM ID: 35606429
  • Liu, Y, et al. (2022) MCTP1 promotes SNAI1-driven neuroendocrine differentiation and epithelial-to- mesenchymal transition of prostate cancer enhancement by ZBTB46/FOXA2/HIF1A. Research Square. 2022;. Link: Research Square
  • Deng, Z, Lyu, W & Zhang, G. (2022) High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics (Basel, Switzerland). 2022; 11(7). PM ID: 35884187
  • Chang, WM, et al. (2022) The aberrant cancer metabolic gene carbohydrate sulfotransferase 11 promotes non-small cell lung cancer cell metastasis via dysregulation of ceruloplasmin and intracellular iron balance. Translational oncology. 2022; 25:101508. PM ID: 35985204
  • Chen, C, et al. (2022) ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nature communications. 2022; 13(1):6108. PM ID: 36245009

Products

Catalog Number Description Size Price Quantity Add to Cart
TR860A-1 NF-kB/293/GFP-Luc Transcriptional Reporter Cell Line >2 x 10^6 Cells $3258
- +

Overview

Overview

Monitor NF-κB signaling in Jurkat cells Speed your studies with this pre-built 293 TN-based cell line for monitoring NF-κB signaling in real time. We’ve already integrated an expression cassette that includes NF-κB-responsive transcriptional elements upstream of a minimal CMV promoter (mCMV)-GFP-luciferase cassette. Expression of GFP (up to 300-fold over background) and luciferase only occurs in the presence of active NF-κB signaling, enabling screening for genetic and/or small molecule inhibitors and activators of the NF-κB signaling pathway. Use GFP fluorescence for live cell imaging and FACS, or luciferase activity to quantitatively measure activity of the signaling pathway.
  • Study NF-κB signaling in 293 TN cells
  • Perform live cell imaging or FACS (300-fold over background NF-κB-dependent GFP signal)
  • Measure pathway activity with luciferase
  • Compatible with a variety of screening methods including small molecule and RNAi

How It Works

Supporting Data

Supporting Data

See the NF-κB/293/GFP-luc Transcriptional Reporter Cell Line in action

Monitor NF-κB in real time with GFP

Monitor NF-κB in real time with GFP

Quantitate NF-κB Activation with luciferase assaysQuantitate NF-κB Activation with luciferase assays

FAQs

Citations

  • Gampala, S, et al. (2024) New Ref-1/APE1 targeted inhibitors demonstrating improved potency for clinical applications in multiple cancer types. Pharmacological Research. 2024;:107092. Link: Pharmacological Research
  • Liu, YN, et al. (2024) Immunosuppressive role of BDNF in therapy-induced neuroendocrine prostate cancer. Molecular oncology. 2024;. PM ID: 38381121
  • Ishino, T, et al. (2023) Somatic mutations can induce a noninflamed tumour microenvironment via their original gene functions, despite deriving neoantigens. British journal of cancer. 2023;. PM ID: 36732592
  • Pandi, K, et al. (2023) Porphyromonas gingivalis induction of TLR2 association with Vinculin enables PI3K activation and immune evasion. PLoS pathogens. 2023; 19(4):e1011284. PM ID: 37023213
  • Ramachandran, M, et al. (2023) Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer cell. 2023;. PM ID: 37172581
  • Wen, YC, et al. (2023) CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer. Cell death & disease. 2023; 14(5):304. PM ID: 37142586
  • Li, X, et al. (2023) Rosmarinic acid ameliorates autoimmune responses through suppression of intracellular nucleic acid-mediated type I interferon expression. Biochemical and Biophysical Research Communications. 2023;. Link: Biochemical and Biophysical Research Communications
  • Ibrahim, L, et al. (2023) Succinylation of a KEAP1 sensor lysine promotes NRF2 activation. bioRxiv : the preprint server for biology. 2023;. PM ID: 37215033
  • Park, CS, et al. (2023) Stromal-induced epithelial-mesenchymal transition induces targetable drug resistance in acute lymphoblastic leukemia. Cell reports. 2023; 42(7):112804. PM ID: 37453060
  • Ouyang, W, et al. (2023) Development of a New Cell-Based AP-1 Gene Reporter Potency Assay for Anti-Anthrax Toxin Therapeutics. Toxins. 2023; 15(9):528. Link: Toxins
  • Zhao, G, et al. (2023) Base editing of the mutated TERT promoter inhibits liver tumor growth. Hepatology (Baltimore, Md.). 2023;. PM ID: 38016019
  • You, S & Bollong, MJ. (2023) A high throughput screen for pharmacological inhibitors of the carbohydrate response element. Scientific data. 2023; 10(1):676. PM ID: 37794069
  • Melo, CL. (2023) LUMINALABREASTCANCER: INSIGHTS INTOCELLCYCLEREGULATIONAND ESTROGENSIGNALING. Thesis. 2023;. Link: Thesis
  • Labanieh, L, et al. (2022) Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell. 2022;. PM ID: 35483375
  • Teng, CT, et al. (2022) SUPPLEMENTARY MATERIAL: Development of novel cell lines for high throughput screening to detect estrogen-related receptor alpha modulators. slas-discovery.org. 2022;. Link: slas-discovery.org
  • Dane, EL, et al. (2022) STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nature materials. 2022; 21(6):710-720. PM ID: 35606429
  • Liu, Y, et al. (2022) MCTP1 promotes SNAI1-driven neuroendocrine differentiation and epithelial-to- mesenchymal transition of prostate cancer enhancement by ZBTB46/FOXA2/HIF1A. Research Square. 2022;. Link: Research Square
  • Deng, Z, Lyu, W & Zhang, G. (2022) High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics (Basel, Switzerland). 2022; 11(7). PM ID: 35884187
  • Chang, WM, et al. (2022) The aberrant cancer metabolic gene carbohydrate sulfotransferase 11 promotes non-small cell lung cancer cell metastasis via dysregulation of ceruloplasmin and intracellular iron balance. Translational oncology. 2022; 25:101508. PM ID: 35985204
  • Chen, C, et al. (2022) ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nature communications. 2022; 13(1):6108. PM ID: 36245009