pGreenFire 2.0 NFκB Reporter Lentivector & Virus

Study NF-κB signaling with the pGreenFire 2.0 NFκB Reporter (red firefly luciferase & GFP), which is engineered for reliable stable cell line generation.
  • Sort responsive cells with GFP
  • Measure activity with red firefly luciferase
  • Leverage SBI’s highly-regarded lentivectors
  • Create stable signaling pathway reporter cell lines
  • Introduce reporters into difficult-to-transfect cell types, including primary and non-dividing mammalian cell lines

Products

Catalog Number Description Size Price Quantity Add to Cart
TR412PA-P pGreenFire 2.0 NFkB reporter plasmid (pGF2-NFκB-rFluc-T2A-GFP-mPGK-Puro) 10 µg $728
- +
TR412VA-P pGreenFire 2.0 NFkB reporter virus (pGF2-NFκB-rFluc-T2A-GFP-mPGK-Puro) >2 x 10^6 IFUs $728
- +

Overview

Overview

Monitor signal transduction in real time with our re-engineered pGreenFire 2.0 Lentivectors

SBI has upgraded our popular pGreenFire signaling pathway reporter lentivectors with a design that leads to more reliable generation of stable cell lines. We’ve also swapped in the red firefly luciferase reporter (rFLuc), which opens up the possibility of performing a dual-spectral luciferase assay and delivers greater sensitivity for in vivo applications than conventional luciferase.

With the pGreenFire 2.0 NFκB Reporter Lentivector & Virus (pGF2-NFκB-rFluc-T2A-GFP-mPGK-Puro), the core reporter functionality is similar to the original pGreenFire lentivector—NF-κB transcriptional response elements (TREs) are placed upstream of a minimal CMV promoter (mCMV) which together drive co-expression of rFLuc and GFP in response to NF-κB activity. The result is the ability to quantitatively measure NF-κB activity using both fluorescence and luciferase activity.

What makes our next-gen pGreenFire 2.0 vectors even better than other TRE reporter vectors is the smart design, which adds in a constitutive selection cassette for stable cell line generation while minimizing interference with the upstream TRE. By using a weak/moderate mPGK promoter to drive the antibiotic selection marker (puromycin resistance) and carefully arranging the conditional reporter genes, the selection marker is reliably expressed without compromising conditional expression of rFLuc and GFP.

As with our original pGreenFire1 vectors, all pGreenFire 2.0 lentivectors leverage our reliable lentivector technology and save you time with pre-built signal transduction pathway reporters that come as ready-to-transduce pre-packaged lentivirus and plasmid that can be transfected into the lentivirus producing system of your choice*.

  • Sort responsive cells with GFP
  • Measure activity with red firefly luciferase
  • Leverage SBI’s highly-regarded lentivectors
  • Create stable signaling pathway reporter cell lines
  • Introduce reporters into difficult-to-transfect cell types, including primary and non-dividing mammalian cell lines
 pGreenFire 2.0 NFκB Reporter Lentivector & Virus *Please note that these vectors only function properly when transduced. Transfection keeps the constitutive RSV promoter intact, leading to nonspecific expression of the reporter genes.

How It Works

Supporting Data

Supporting Data

See our pGreenFire 2.0 transcriptional response element reporters in action The pGreenFire 2.0 NFκB Reporter efficiently and quantitatively reports on NFκB activity in MDA-MB-213 cells

Figure 1.The pGreenFire 2.0 NFκB Reporter efficiently and quantitatively reports on NFκB activity in MDA-MB-213 cells. Relative luciferase activity (A) and GFP activity (B) both increase in response to TNFα, and NFκB inducer. (C) Like all pGreenFire 2.0 lentivectors, the pGreenFire 2.0 NFκB Reporter contains an mPGK-Puro cassette to streamline creation of stable reporters integrated into the cell lines of your choice.

FAQs

Resources

Citations

  • Gampala, S, et al. (2024) New Ref-1/APE1 targeted inhibitors demonstrating improved potency for clinical applications in multiple cancer types. Pharmacological Research. 2024;:107092. Link: Pharmacological Research
  • Liu, YN, et al. (2024) Immunosuppressive role of BDNF in therapy-induced neuroendocrine prostate cancer. Molecular oncology. 2024;. PM ID: 38381121
  • Ishino, T, et al. (2023) Somatic mutations can induce a noninflamed tumour microenvironment via their original gene functions, despite deriving neoantigens. British journal of cancer. 2023;. PM ID: 36732592
  • Pandi, K, et al. (2023) Porphyromonas gingivalis induction of TLR2 association with Vinculin enables PI3K activation and immune evasion. PLoS pathogens. 2023; 19(4):e1011284. PM ID: 37023213
  • Ramachandran, M, et al. (2023) Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer cell. 2023;. PM ID: 37172581
  • Wen, YC, et al. (2023) CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer. Cell death & disease. 2023; 14(5):304. PM ID: 37142586
  • Li, X, et al. (2023) Rosmarinic acid ameliorates autoimmune responses through suppression of intracellular nucleic acid-mediated type I interferon expression. Biochemical and Biophysical Research Communications. 2023;. Link: Biochemical and Biophysical Research Communications
  • Ibrahim, L, et al. (2023) Succinylation of a KEAP1 sensor lysine promotes NRF2 activation. bioRxiv : the preprint server for biology. 2023;. PM ID: 37215033
  • Park, CS, et al. (2023) Stromal-induced epithelial-mesenchymal transition induces targetable drug resistance in acute lymphoblastic leukemia. Cell reports. 2023; 42(7):112804. PM ID: 37453060
  • Ouyang, W, et al. (2023) Development of a New Cell-Based AP-1 Gene Reporter Potency Assay for Anti-Anthrax Toxin Therapeutics. Toxins. 2023; 15(9):528. Link: Toxins
  • Zhao, G, et al. (2023) Base editing of the mutated TERT promoter inhibits liver tumor growth. Hepatology (Baltimore, Md.). 2023;. PM ID: 38016019
  • You, S & Bollong, MJ. (2023) A high throughput screen for pharmacological inhibitors of the carbohydrate response element. Scientific data. 2023; 10(1):676. PM ID: 37794069
  • Melo, CL. (2023) LUMINALABREASTCANCER: INSIGHTS INTOCELLCYCLEREGULATIONAND ESTROGENSIGNALING. Thesis. 2023;. Link: Thesis
  • Labanieh, L, et al. (2022) Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell. 2022;. PM ID: 35483375
  • Teng, CT, et al. (2022) SUPPLEMENTARY MATERIAL: Development of novel cell lines for high throughput screening to detect estrogen-related receptor alpha modulators. slas-discovery.org. 2022;. Link: slas-discovery.org
  • Dane, EL, et al. (2022) STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nature materials. 2022; 21(6):710-720. PM ID: 35606429
  • Liu, Y, et al. (2022) MCTP1 promotes SNAI1-driven neuroendocrine differentiation and epithelial-to- mesenchymal transition of prostate cancer enhancement by ZBTB46/FOXA2/HIF1A. Research Square. 2022;. Link: Research Square
  • Deng, Z, Lyu, W & Zhang, G. (2022) High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics (Basel, Switzerland). 2022; 11(7). PM ID: 35884187
  • Chang, WM, et al. (2022) The aberrant cancer metabolic gene carbohydrate sulfotransferase 11 promotes non-small cell lung cancer cell metastasis via dysregulation of ceruloplasmin and intracellular iron balance. Translational oncology. 2022; 25:101508. PM ID: 35985204
  • Chen, C, et al. (2022) ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nature communications. 2022; 13(1):6108. PM ID: 36245009

Products

Catalog Number Description Size Price Quantity Add to Cart
TR412PA-P pGreenFire 2.0 NFkB reporter plasmid (pGF2-NFκB-rFluc-T2A-GFP-mPGK-Puro) 10 µg $728
- +
TR412VA-P pGreenFire 2.0 NFkB reporter virus (pGF2-NFκB-rFluc-T2A-GFP-mPGK-Puro) >2 x 10^6 IFUs $728
- +

Overview

Overview

Monitor signal transduction in real time with our re-engineered pGreenFire 2.0 Lentivectors

SBI has upgraded our popular pGreenFire signaling pathway reporter lentivectors with a design that leads to more reliable generation of stable cell lines. We’ve also swapped in the red firefly luciferase reporter (rFLuc), which opens up the possibility of performing a dual-spectral luciferase assay and delivers greater sensitivity for in vivo applications than conventional luciferase.

With the pGreenFire 2.0 NFκB Reporter Lentivector & Virus (pGF2-NFκB-rFluc-T2A-GFP-mPGK-Puro), the core reporter functionality is similar to the original pGreenFire lentivector—NF-κB transcriptional response elements (TREs) are placed upstream of a minimal CMV promoter (mCMV) which together drive co-expression of rFLuc and GFP in response to NF-κB activity. The result is the ability to quantitatively measure NF-κB activity using both fluorescence and luciferase activity.

What makes our next-gen pGreenFire 2.0 vectors even better than other TRE reporter vectors is the smart design, which adds in a constitutive selection cassette for stable cell line generation while minimizing interference with the upstream TRE. By using a weak/moderate mPGK promoter to drive the antibiotic selection marker (puromycin resistance) and carefully arranging the conditional reporter genes, the selection marker is reliably expressed without compromising conditional expression of rFLuc and GFP.

As with our original pGreenFire1 vectors, all pGreenFire 2.0 lentivectors leverage our reliable lentivector technology and save you time with pre-built signal transduction pathway reporters that come as ready-to-transduce pre-packaged lentivirus and plasmid that can be transfected into the lentivirus producing system of your choice*.

  • Sort responsive cells with GFP
  • Measure activity with red firefly luciferase
  • Leverage SBI’s highly-regarded lentivectors
  • Create stable signaling pathway reporter cell lines
  • Introduce reporters into difficult-to-transfect cell types, including primary and non-dividing mammalian cell lines
 pGreenFire 2.0 NFκB Reporter Lentivector & Virus *Please note that these vectors only function properly when transduced. Transfection keeps the constitutive RSV promoter intact, leading to nonspecific expression of the reporter genes.

How It Works

Supporting Data

Supporting Data

See our pGreenFire 2.0 transcriptional response element reporters in action The pGreenFire 2.0 NFκB Reporter efficiently and quantitatively reports on NFκB activity in MDA-MB-213 cells

Figure 1.The pGreenFire 2.0 NFκB Reporter efficiently and quantitatively reports on NFκB activity in MDA-MB-213 cells. Relative luciferase activity (A) and GFP activity (B) both increase in response to TNFα, and NFκB inducer. (C) Like all pGreenFire 2.0 lentivectors, the pGreenFire 2.0 NFκB Reporter contains an mPGK-Puro cassette to streamline creation of stable reporters integrated into the cell lines of your choice.

FAQs

Citations

  • Gampala, S, et al. (2024) New Ref-1/APE1 targeted inhibitors demonstrating improved potency for clinical applications in multiple cancer types. Pharmacological Research. 2024;:107092. Link: Pharmacological Research
  • Liu, YN, et al. (2024) Immunosuppressive role of BDNF in therapy-induced neuroendocrine prostate cancer. Molecular oncology. 2024;. PM ID: 38381121
  • Ishino, T, et al. (2023) Somatic mutations can induce a noninflamed tumour microenvironment via their original gene functions, despite deriving neoantigens. British journal of cancer. 2023;. PM ID: 36732592
  • Pandi, K, et al. (2023) Porphyromonas gingivalis induction of TLR2 association with Vinculin enables PI3K activation and immune evasion. PLoS pathogens. 2023; 19(4):e1011284. PM ID: 37023213
  • Ramachandran, M, et al. (2023) Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. Cancer cell. 2023;. PM ID: 37172581
  • Wen, YC, et al. (2023) CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer. Cell death & disease. 2023; 14(5):304. PM ID: 37142586
  • Li, X, et al. (2023) Rosmarinic acid ameliorates autoimmune responses through suppression of intracellular nucleic acid-mediated type I interferon expression. Biochemical and Biophysical Research Communications. 2023;. Link: Biochemical and Biophysical Research Communications
  • Ibrahim, L, et al. (2023) Succinylation of a KEAP1 sensor lysine promotes NRF2 activation. bioRxiv : the preprint server for biology. 2023;. PM ID: 37215033
  • Park, CS, et al. (2023) Stromal-induced epithelial-mesenchymal transition induces targetable drug resistance in acute lymphoblastic leukemia. Cell reports. 2023; 42(7):112804. PM ID: 37453060
  • Ouyang, W, et al. (2023) Development of a New Cell-Based AP-1 Gene Reporter Potency Assay for Anti-Anthrax Toxin Therapeutics. Toxins. 2023; 15(9):528. Link: Toxins
  • Zhao, G, et al. (2023) Base editing of the mutated TERT promoter inhibits liver tumor growth. Hepatology (Baltimore, Md.). 2023;. PM ID: 38016019
  • You, S & Bollong, MJ. (2023) A high throughput screen for pharmacological inhibitors of the carbohydrate response element. Scientific data. 2023; 10(1):676. PM ID: 37794069
  • Melo, CL. (2023) LUMINALABREASTCANCER: INSIGHTS INTOCELLCYCLEREGULATIONAND ESTROGENSIGNALING. Thesis. 2023;. Link: Thesis
  • Labanieh, L, et al. (2022) Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell. 2022;. PM ID: 35483375
  • Teng, CT, et al. (2022) SUPPLEMENTARY MATERIAL: Development of novel cell lines for high throughput screening to detect estrogen-related receptor alpha modulators. slas-discovery.org. 2022;. Link: slas-discovery.org
  • Dane, EL, et al. (2022) STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nature materials. 2022; 21(6):710-720. PM ID: 35606429
  • Liu, Y, et al. (2022) MCTP1 promotes SNAI1-driven neuroendocrine differentiation and epithelial-to- mesenchymal transition of prostate cancer enhancement by ZBTB46/FOXA2/HIF1A. Research Square. 2022;. Link: Research Square
  • Deng, Z, Lyu, W & Zhang, G. (2022) High-Throughput Identification of Epigenetic Compounds to Enhance Chicken Host Defense Peptide Gene Expression. Antibiotics (Basel, Switzerland). 2022; 11(7). PM ID: 35884187
  • Chang, WM, et al. (2022) The aberrant cancer metabolic gene carbohydrate sulfotransferase 11 promotes non-small cell lung cancer cell metastasis via dysregulation of ceruloplasmin and intracellular iron balance. Translational oncology. 2022; 25:101508. PM ID: 35985204
  • Chen, C, et al. (2022) ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nature communications. 2022; 13(1):6108. PM ID: 36245009