Home | Products | Imaging & Reporter Vectors | Signaling Pathway Reporters | pGreenFire1-mCMV Negative Control Lentivector

pGreenFire1-mCMV Negative Control Lentivector

Run your pGreenFire projects with confidence with the addition of this negative control that drives copGFP and luciferase with a minimal CMV promoter

Catalog Number
Description
Size
Price
Quantity
Add to Cart
TR010PA-1
pGreenFire1-mCMV Plasmid (pTRH1 mCMV dscGFP T2A Fluc, negative control)
10 µg
$ 539
TR010VA-1
pGreenFire1-mCMV Virus (pTRH1 mCMV dscGFP T2A Fluc)
>2 x 10^6 IFUs
$ 677

Overview

Supporting your studies with ready-to-go controls

No need to make a negative control for your pGreenFire projects—SBI’s already built one for you. With the pGreenFire1-mCMV Negative Control Lentivector, the GreenFire cassette is driven by a minimal CMV promoter with dscGFP (destabilized copGFP, 2-hour half-life) and luciferase co-expression mediated by a T2A element. The minimal CMV promoter delivers negligible expression, and this configuration provides a control for background levels of dscGFP and luciferase expression in the absence of enhancer elements, such as the ones used in our Signal Transduction Pathway Reporters/Transcriptional Response Element Reporters.

The pGreenFire1-mCMV vector is also available with constitutively expressed markers to simplify cell line construction—EF1α-neo (Cat.# TR010PA-N) and EF1α-puro (Cat.# TR010PA-P). All versions of this lentivector are available as lentivector or pre-packaged virus.

Supporting Data

See our transcriptional response element reporters in action

Monitor oncogenic pathway reporters

Develop target gene-specific LXR agonists that could regulate reverse cholesterol transport without increasing lipogenesis

General pGreenFire data examples

Monitoring NF-κB transactivation

Citations

  • Cen, X, et al. (2019) TLR1/2 Specific Small-Molecule Agonist Suppresses Leukemia Cancer Cell Growth by Stimulating Cytotoxic T Lymphocytes. Adv Sci (Weinh). 2019 May 17; 6(10):1802042. PM ID: 31131189
  • Cen, X, et al. (2019) TLR1/2 Specific Small‐Molecule Agonist Suppresses Leukemia Cancer Cell Growth by Stimulating Cytotoxic T Lymphocytes. Adv. Sci.. 2019 Mar 27;:1802042. Link: Adv. Sci.
  • Wang, J, et al. (2019) Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med.. 2019 Mar 4;. PM ID: 30833750
  • O'Grady, B, et al. (2019) Spatiotemporal control and modeling of morphogen delivery to induce gradient patterning of stem cell differentiation using fluidic channels. Biomater Sci. 2019 Feb 19;. PM ID: 30778445
  • Ma, Y, et al. (2019) Inhibition of pancreatic cancer stem cell characteristics by α-Mangostin: Molecular mechanisms involving Sonic hedgehog and Nanog. J. Cell. Mol. Med.. 2019 Feb 3;. PM ID: 30712329
  • Yuan, S, et al. (2019) SREBP-dependent lipidomic reprogramming as a broad-spectrum antiviral target. Nat Commun. 2019 Jan 10; 10(1):120. PM ID: 30631056
  • Lin, YS, et al. (2019) Liver X Receptor/Retinoid X Receptor Pathway Plays a Regulatory Role in Pacing-Induced Cardiomyopathy. J Am Heart Assoc. 2019 Jan 8; 8(1):e009146. PM ID: 30612502
  • Heun, Y, et al. (2017) HIF-1α Dependent Wound Healing Angiogenesis In Vivo Can Be Controlled by Site-Specific Lentiviral Magnetic Targeting of SHP-2. Mol. Ther.. 2017 Jul 5; 25(7):1616-1627. PM ID: 28434868
  • Phua, KKL, Liu, Y & Sim, SH. (2017) Non-linear enhancement of mRNA delivery efficiencies by influenza A derived NS1 protein engendering host gene inhibition property. Biomaterials. 2017 Jul 1; 133:29-36. PM ID: 28426973
  • Takada, S, et al. (2017) Pluripotent stem cell models of Blau syndrome reveal an IFN-γ-dependent inflammatory response in macrophages. J. Allergy Clin. Immunol.. 2017 Jun 3;. PM ID: 28587749
  • Li, X, et al. (2017) Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy. Mol. Cell. 2017 Jun 1; 66(5):684-697.e9. PM ID: 28552616
  • Chen, YC, et al. (2017) Selective Photomechanical Detachment and Retrieval of Divided Sister Cells from Enclosed Microfluidics for Downstream Analyses. ACS Nano. 2017 May 23; 11(5):4660-4668. PM ID: 28480715
  • Choi, EJ, et al. (2017) A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene. 2017 May 15;. PM ID: 28504720
  • Krabbe, G, et al. (2017) Microglial NFκB-TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc. Natl. Acad. Sci. U.S.A.. 2017 May 9; 114(19):5029-5034. PM ID: 28438992
  • Schmidt, C, et al. (2017) Pre-clinical drug screen reveals topotecan, actinomycin D and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro-oncology. 2017 May 8;. PM ID: 28482026
  • Pryke, KM, et al. (2017) A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses. MBio. 2017 May 2; 8(3). PM ID: 28465426
  • Gryder, BE, et al. (2017) PAX3-FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability. Cancer Discov. 2017 Apr 26;. PM ID: 28446439
  • Jin, C, et al. (2017) Over-expression of ASIC1a promotes proliferation via activation of the β-catenin/LEF-TCF axis and is associated with disease outcome in liver cancer. Oncotarget. 2017 Apr 18; 8(16):25977-25988. PM ID: 27462920
  • Wang, W, et al. (2017) Biological or pharmacological activation of protein kinase C alpha constrains hepatitis E virus replication. Antiviral Res.. 2017 Apr 1; 140:1-12. PM ID: 28077314
  • Teng, CT, et al. (2017) Development of Novel Cell Lines for High-Throughput Screening to Detect Estrogen-Related Receptor Alpha Modulators. SLAS Discov. 2017 Jan 1;:2472555216689772. PM ID: 28346099

Have Questions?

A System Biosciences technical expert is happy to help!

(888) 266-5066 or Contact Us

Sign up to receive technical advice and exclusive deals directly to your inbox.